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© What is causal inference?
® How can the impact of unmeasured confounding be assessed?

® An example: abciximab and death in percutaneous coronary
intervention patients.
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Causal inference: why and how?

There are many situations in which randomised trials cannot be
conducted:
o Often difficult or unethical to randomise patients to treatments.
o But there may exist observational data containing
treatments/exposures and outcomes of interest!
Causal inference permits causal interpretations of associations.
e Strict assumptions required:

e The one | care about here is no unmeasured confounding.
e Assume the others are satisfied. . .

¢ Use the potential outcomes framework. . .
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Potential outcomes: abciximab and death

Each patient has two potential

outcomes:
Y'! = death
if received
abciximab
[ Patient i ]

N\

Y0 — death if
no abciximab
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Potential outcomes: abciximab and death

Each patient has two potential Of which only one is observed:
outcomes:
Y=Y =
Y! = death death if
if received abciximab
abciximab /
/ Patient i:
received
[ Patient / ] abciximab,
\ outcome Y
N
[ Y0 — death if] { Y0 = death if |
no abciximab ' NO abcmmab '

.............
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Potential outcomes and the causal odds ratio

A = 0 if patient did not receive treatment; A = 1 if received treatment.

e Causal odds ratio:

. P(YT=1) P(Y? =1)
OR"= 1—P(Y1:1)/1—P(Y0:1)
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Potential outcomes and the causal odds ratio

A = 0 if patient did not receive treatment; A = 1 if received treatment.

e Causal odds ratio:

. P(Y'=1) P(Y? =1)
OR"= 1—P(Y1:1)/1—P(Y0:1)

e Conditional odds ratio:

_ P(Y=1]A=1) ALY =1]A=0)
OR = 1_P(y:1|A:1)/1—P(Y:1\A=0)

If causal inference assumptions are satisfied, OR° = OR.

Jessica Kasza (Monash) Confounding functions 5/15



Differences between treatment groups

o |f data are observational, likely to be differences between
treatment groups.
e Measured confounders:

e e.g. treated subjects tend to be older & older patients more likely to
experience the outcome.

e Unmeasured confounders:
e e.g. cognitive function; social connectedness; some measure of
overall health.
¢ Adjusting for measured confounders:

e Assume an inverse probability of treatment weighting approach
used to estimate a marginal odds ratio.
e Skip the details!
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Differences between treatment groups

o |f data are observational, likely to be differences between
treatment groups.
e Measured confounders:

e e.g. treated subjects tend to be older & older patients more likely to
experience the outcome.

e Unmeasured confounders:
e e.g. cognitive function; social connectedness; some measure of
overall health.
¢ Adjusting for measured confounders:

e Assume an inverse probability of treatment weighting approach
used to estimate a marginal odds ratio.
e Skip the details!

How can we adjust for the unmeasured differences that we
suspect are present?

Jessica Kasza (Monash) Confounding functions 6/15



Correcting for unmeasured confounding

¢ Instrumental variables: a variable related to treatment and only
related to outcome through treatment.

e Able to adjust for the entire impact of unmeasured confounding.
e Problem: IVs may not be available if there is a limited set of
recorded variables.

o External adjustment: assume the existence of one or more
unmeasured (binary) confounders.
e Useful if you have good expert knowledge on particular
unmeasured confounders.

e Problems:
o difficult to assess the entire impact of unmeasured confounding;
e assumptions may be as untenable as original assumption of no

unmeasured confounding.
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Confounding function approach’

Adjust estimates using a confounding function that describes the
degree of unmeasured confounding
P(YZa=1A=1)

@)= pya=1a=oy 2~

Following Brumback et al (Stat Med 2004), Robins (Synthese 1999)

Jessica Kasza (Monash) Confounding functions 8/15



Confounding function approach’

Adjust estimates using a confounding function that describes the
degree of unmeasured confounding

P(y0:1|A:‘|) _P(Y1:1|A:1)
O =pyo=1a=o0y = pryr=1a=0)

Following Brumback et al (Stat Med 2004), Robins (Synthese 1999)

Jessica Kasza (Monash) Confounding functions 8/15



Confounding function approach’

Adjust estimates using a confounding function that describes the
degree of unmeasured confounding

_P(YO=1A=1) . P(Y'=1]A=1)
=~ Bvo=ia=0) ‘= pyi=1a=0)

c(0)

e ¢(0), c(1) are a counterfactual quantities: values selected by
investigators.
¢ Requires contextual knowledge to quantify the impact of
unmeasured confounding, in terms of counterfactual outcomes.
What differences in the outcomes are due to unaccounted-for

differences in the treatment groups, rather than due to the effect of
treatment on the outcome?

Following Brumback et al (Stat Med 2004), Robins (Synthese 1999)
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Confounding function approach

A = 0 = no treatment, A = 1 = received treatment:

(YO =1]A=1) _PT=1A=1)
c(0) = P(YO = 1]A=0)’ c(1) = P(Y1=1]A=0)
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Confounding function approach

A =0 = no treatment, A = 1 = received treatment:

CP(YO=1A=1) L P(YT=1]A=1)
O =pvo=qa=0y V= pyi=ia=o

c0)=c(1)=1=
e No unmeasured confounding is present.
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Confounding function approach

A =0 = no treatment, A = 1 = received treatment:

CP(YO=1A=1) L P(YT=1]A=1)
O =pvo=qa=0y V= pyi=ia=o

c0)=c(1)=1=
e No unmeasured confounding is present.

c(0)>1,c(1) >1,¢c(0)=c(1) =
¢ Risk of (both) potential outcomes higher among those actually
treated.

e Some of the observed risk of the outcome for treated subjects is
due to some unmeasured ‘ill health’;

o Effect of treatment the same in treated and untreated groups.
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Adjusting for unmeasured confounding

. P(Y'=1) P(Y0 =1)
OR" = 1—P(Y1:1)/1—P(Y0:1)

o(a) = ggz - ”2 - ;3 h(a) = P(A=0) + c(a)P(A = 1)

The causal odds ratio can be written as:

h(1)P(Y =1|A=1)/c(1) Y=1A=0)

OR® = T APy = 1/A= 1)/e(1) 1— O)P =1A=0)

« Consider sensitivity of OR to range of values of ¢(1) and ¢(0).

o Beware implicit assumptions if ¢(1) # ¢(0): differential treatment
effect in treated and untreated.
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Application: Abciximab and death?

[ Abciximab: I [ 11 died ]
698 (70% 1.6% of 698
996 percutaneous (70%) ( o )

coronary inter-
ti tient
Vention patien's No abciximab: 15 died
298 (30%) (5.0% of 298)

e Administration of abciximab at discretion of interventionist.

o Adjust for sex, height, diabetes, recent MI, left ventricle ejection
fraction, number of vessels in PCI, insertion of coronary stent
using inverse probability of treatment weighting.

2Data from twang R package, originally analysed in Kereiakes et al, Am
Heart J (2000)
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Application: Abciximab and death?

[ Abciximab: I [ 11 died ]
698 (70% 1.6% of 698
996 percutaneous (70%) ( o )

coronary inter-
ti tient
Vention patien's No abciximab: 15 died
298 (30%) (5.0% of 298)

e Administration of abciximab at discretion of interventionist.

o Adjust for sex, height, diabetes, recent MI, left ventricle ejection
fraction, number of vessels in PCI, insertion of coronary stent
using inverse probability of treatment weighting.

OR = 0.17,95% Cl (0.08, 0.46)

2Data from twang R package, originally analysed in Kereiakes et al, Am
Heart J (2000)
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Application: Abciximab and death

P(YAPC = 1|Abc)
P(YAb¢ = 1]No Abc)

P(YNoAbC — 1|Abc)
P(YNoAbc — 1|No Abc)

c(Abciximab) =

¢(No Abciximab) =

If both > 1, then
P(YAP¢ = 1|Abc) > P(YA*¢ = 1|No Abc)
P(YNoAP¢ — 1]Abc) > P(YN°AP® = 1|No Abc)
e Had they not received Abciximab, those who actually received

Abciximab more likely to die than those who did not receive
Abciximab.
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Sensitivity analysis for the OR
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Sensitivity analysis for the OR, ¢(0) = ¢(1) = 1

.8 9 1 11 12 1.3
Confounding function value
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Take-home messages

e Causal inference is useful in situations when randomised trials
can’t be conducted
e Strict assumptions, including no unmeasured confounding.
e Problem: in most applications, the assumption of unmeasured
confounders will not be satisfied!

e Turn to alternative approaches:
¢ Instrumental variables; external adjustment; confounding functions.

¢ |'ve described the confounding function approach for binary
outcomes.
e Approach also available for continuous outcomes.
e Provides a way to assess the sensitivity of estimates to the entire
effect of unmeasured confounding.
o Easy to apply.
e Contact me for Stata code!
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Propensity scores

Propensity score for subject /, with observed covariates X; = x;,
treatment A; = a;:

PS; = P(Ai =1|Xi = x;)

Usually estimated using logistic regression models.

Rosenbaum & Rubin (Biometrika, 1983): adjustment for PS
sufficient to remove bias due to all X.

Inverse probability of treatment weighting: Each subject’s
observation assigned a weight:

a; 1—a

Y= Ps T1-Ps

Each subject’s observation weighted by 1/w;.
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